
Note: var, let &

const are all

valid keywords to

declare variables.

The difference

between them is

covered on page 7

of this cheatsheet.

2 Basic Vocabulary

Expression

A reference, value or a

group of reference(s)

and value(s) combined

with operator(s), which

result in a single value.

Variable

A named reference to

a value is a variable.

Keyword / reserved word

Any word that is part of

the vocabulary of the

programming language is

called a keyword

(a.k.a reserved word).

Examples: var = + if for...

Operator

Operators are reserved-words that

perform action on values and variables.

Examples: + - = * in === typeof != ...

Statement

A group of words, numbers

and operators that do a

task is a statement.

var a = 7 + "2";{

{

1 Seven (7) Types

1. String

2. Number

3. Boolean

4. Null

5. Undefined

6. Symbol

7. Object

- Array

- Function

"Any text"

123.45

true or false

null

undefined

Symbol('something')

{ key: 'value'}

[1, "text", false]

function name() { }

{

S
ix
P
ri
m
it
iv
e
T
y
p
e
s

var user = {

name: "Aziz Ali",

yearOfBirth: 1988,

calculateAge: function(){

// some code to calculate age

}

}

{

Key

These are the

keys in user object.

Value

These are the

values of the

respective keys

in user object.

Method

If a key has a

function as a

value, its called

a method.

3 Object

An object is a data type in

JavaScript that is used to store

a combination of data in a

simple key-value pair. Thats it.

"Don't just learn JavaScript - Become a Full-Stack JavaScript Developer" https://iLoveCoding.org

iLoveCoding

JavaScript Cheatsheet
Learn JavaScript Correctly (Video course) https://ilovecoding.org/courses/js2

Page 1< >♥ iLoveCoding

4 Function
A function is simply a bunch of code bundled in a section. This bunch of code ONLY runs when the

function is called. Functions allow for organizing code into sections and code reusability.

Using a function has ONLY two parts. (1) Declaring/defining a function, and (2) using/running a function.

// Function declaration / Function statement
function someName(param1, param2){

// bunch of code as needed...
var a = param1 + "love" + param2;
return a;

}

// Invoke (run / call) a function
someName("Me", "You")

Name of function
Thats it, its just a name

you give to your function.

Tip: Make your function

names descriptive to what

the function does.

Code block
Any code within the curly

braces { ... } is called a

"block of code", "code

block" or simply "block".

This concept is not just

limited to functions. "if

statements", "for loops"

and other statements

use code blocks as well.

Return (optional)
A function can optionally

spit-out or "return" a value

once its invoked. Once a

function returns, no further

lines of code within the

function run.

Invoke a function
Invoking, calling or running a function all mean the same

thing. When we write the function name, in this case

someName, followed by the brackets symbol () like this

someName(), the code inside the function gets executed.

Passing parameter(s) to a function (optional)
At the time of invoking a function, parameter(s)

may be passed to the function code.

Parameters / Arguments
(optional)
A function can optionally

take parameters (a.k.a

arguments). The

function can then use

this information within

the code it has.

"Don't just learn JavaScript - Become a Full-Stack JavaScript Developer" https://iLoveCoding.org

iLoveCoding

JavaScript Cheatsheet
Learn JavaScript Correctly (Video course) https://ilovecoding.org/courses/js2

Page 2< >♥ iLoveCoding

5 Vocabulary around variables and scope

var a = "global";

function first(){

var a = "fresh";

function second(){

console.log(a);

}

}

Scope chain

The nested hierarchy of scope is

called the scope chain. The JS

engine looks for variables in the

scope chain upwards (it its

ancestors, until found)

Scope

The limits in which a variable exists.

Global scope

The outer most scope is called the Global

scope.

Functional scope

Any variables inside a function is in scope

of the function.

Lexical Environment (Lexical scope)

The physical location (scope) where a

variable or function is declared is its lexical

environment (lexical scope).

Rule:

(1) Variables in the outer scope can be

accessed in a nested scope; But variables

inside a nested scope CANNOT be accessed

by the outer scope. (a.k.a private variables.)

(2) Variables are picked up from the lexical

environment.

console.log(a);

var a = "me";

a = "me";

a = 12;

var a;
Variable Declaration

The creation of the

variable.

Variable Initialization

The initial

assignment of value

to a variable.

Variable Assignment

Assigning value to a

variable.

Hoisting

Variables are

declared at the top

of the function

automatically, and

initialized at the time

they are run.

"Don't just learn JavaScript - Become a Full-Stack JavaScript Developer" https://iLoveCoding.org

iLoveCoding

JavaScript Cheatsheet
Learn JavaScript Correctly (Video course) https://ilovecoding.org/courses/js2

Page 3< >♥ iLoveCoding

2 + "7"; // "27"

true - 5 // -4

Type coercion priority order:

1. String

2. Number

3. Boolean

Coercion in action

Does this make sense?

When trying to compare different "types", the JavaScript engine

attempts to convert one type into another so it can compare the two

values.

7 Coercion

Operators are reserved-words that perform action on values and variables.

Arithmetic

.. + ..

.. - ..

.. * ..

.. / ..

.. % ..

.. ** ..

Assignment

.. = ..

.. += ..

.. -= ..

.. *= ..

Logical

.. || ..

.. && ..

Equality

.. === ..

.. == ..

Conversion

+ ..

- ..

! ..

Add

Subtract

Multiply

Divide

Remainder

Exponential

Assign value

Add then assign

Subtract then assign

Multiply then assign

Or

And

Equality

Equality with coercion

Convert to number

Convert to number then negate it

Convert to boolean then inverse it

Relational / Comparison

.. >= ..

.. <= ..

.. != ..

.. !== ..

Increment / Decrement

..++

..--

++..

--..

Others

typeof ..

.. instanceof ..

(..)

...spread-operator

.

..[..]

new ..

delete ..

(.. ? .. : ..)

Greater than or equal to

Less than or equal to

Not equal after coercion

Not equal

Postfix increment

Postfix decrement

Prefix increment

Prefix increment

Operator Precedence

Given multiple operators are used in an expression, the "Operator

Precedence" determines which operator will be executed first. The

higher the precedence, the earlier it will get executed.

Operator Associativity

Given multiple operators have the same precedence, "Associativity"

determines in which direction the code will be parsed.

See the Operator Precedence and Associativity table here:

http://bit.ly/operatortable

6 Operators
Full list of JavaScript operators https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators

"Don't just learn JavaScript - Become a Full-Stack JavaScript Developer" https://iLoveCoding.org

iLoveCoding

JavaScript Cheatsheet
Learn JavaScript Correctly (Video course) https://ilovecoding.org/courses/js2

Page 4< >♥ iLoveCoding

if (a > 0) {

// run this code

} else if (a < 0) {

// run this code

} else {

// run this code

}

switch (expression) {

case choice1:

// run this code

break;

case choice1:

// run this code

break;

default:

// run this code

}(expression)? ifTrue: ifFalse;

If -else Statement: Run certain code, "if" a

condition is met. If the condition is not met,

the code in the "else" block is run (if

available.)

Conditional statements allow our program to run specific code only if certain conditions are

met. For instance, lets say we have a shopping app. We can tell our program to hide the

"checkout" button if the shopping cart is empty.

Switch Statement: Takes a single

expression, and runs the code of the "case"

where the expression matches. The "break"
keyword is used to end the switch

statement.

There are certain values in JavaScript that

return true when coerced into boolean. Such

values are called truthy values. On the other

hand, there are certain values that return

false when coerced to boolean. These

values are knows as falsy values.

Ternary Operator: A ternary operator returns

the first value if the expression is truthy, or

else returns the second value.

8 Conditional Statements

Truthy Values

true

"text"

72

-72

Infinity

-Infinity

{}

[]

Falsy Values

false

""

0

-0

NaN

null

undefined

9 Truthy / Falsy

"Don't just learn JavaScript - Become a Full-Stack JavaScript Developer" https://iLoveCoding.org

iLoveCoding

JavaScript Cheatsheet
Learn JavaScript Correctly (Video course) https://ilovecoding.org/courses/js2

Page 5< >♥ iLoveCoding

for (initial-expression; condition; second-expression){

// run this code in block

}

Loops are used to do something repeatedly. For instance lets say we get a list of 50
blog posts from the database and we want to print their titles on our page. Instead of
writing the code 50 times, we would instead use a loop to make this happen.

while (i<3){

// run this code in block

i++;

}

do {

// run this code in block

i++;

} while (i<3);

Step 1: Run the initial expression.

Step 2: Check if condition meets. If
condition meets, proceed; or else end the
loop.

Step 3: Run the code in block.

Step 4: Run the second-expression.

Step 5: Go to Step 2.

Step 1: If the condition is true, proceed; or
else end the loop.

Step 2: Run the code in block.

Step 3: Go to Step 1.

Step 1: Run the code in block.

Step 2: If the condition is true, proceed; or
else end the loop.

Step 3: Go to Step 1.

For loop

While loop

Do while loop

10 Loop Statements

"Don't just learn JavaScript - Become a Full-Stack JavaScript Developer" https://iLoveCoding.org
iLoveCoding

JavaScript Cheatsheet
Learn JavaScript Correctly (Video course) https://ilovecoding.org/courses/js2

Page 6< >♥ iLoveCoding

Event Loop

DOM Events

Timer Process

HTTP Process

Third-Party
Process

JavaScript Engine

Global Ex. Context

Execution Context

Execution Context

Call Stack
Last-in - first-out

Task Task Task

Message Queue

12 Event Loop

There are 3 ways to create variables in JavaScript:
var, let and const. Variables created with var are
in scope of the function (or global if declared in the
global scope); let variables are block scoped; and
const variables are like let plus their values
cannot be re-assigned.

var a = "some value"; // functional or global scoped

let b = "some value"; // block scoped

const c = "some value"; // block scoped + cannot get new value

11 Ways to create a variable

"Don't just learn JavaScript - Become a Full-Stack JavaScript Developer" https://iLoveCoding.org
iLoveCoding

JavaScript Cheatsheet
Learn JavaScript Correctly (Video course) https://ilovecoding.org/courses/js2

Page 7< >♥ iLoveCoding

13 Browser

Document
The viewport or the section
where the website is displayed is
called the document of the page.

https://...

Window
Each tab of a browser is
considered the window.

This is the outer most
container that a web-app
can access.

Notice: A website opened
in one tab CANNOT
access the window
object of another tab.
Pretty cool right?

The browser contains a
lot of components that a
Front-End Developer may
need, such as Navigator,
JavaScript Engine and
Dev Tools.

A web browser is a pretty advance piece of software which contains a lot of components. Many of these components are accessible to a
web developer, so we can create complex web apps. At the same time a lot of components are kept out of reach of the web developer for
security purposes. For instance, we as web developers can get access to the user's location, but we cannot get access to the user's saved
passwords or browsing history. Let's see below how a browser is structured:

Dev Tools

JavaScript Engine

HTML / CSS Processor

Navigator

"Don't just learn JavaScript - Become a Full-Stack JavaScript Developer" https://iLoveCoding.org
iLoveCoding

JavaScript Cheatsheet
Learn JavaScript Correctly (Video course) https://ilovecoding.org/courses/js2

Page 8< >♥ iLoveCoding

14 DOM - Document Object Model
What is a "Node"?

(in the context of DOM)

Node: Every item in the DOM

tree is called a node. There

are two types of node - A text

node, and an element node:

Text Node: Node that has text.

Element Node: Node that has

an element.

Child Node: A node which is a

child of another node.

Parent Node: A node which

has one or more child.

Descendent Node: A node

which is nested deep in the

tree.

Sibling Node: A node that

share the same parent node.

Query/Get Elements

// Preferred way:
document.querySelector('css-selectors')
document.querySelectorAll('css-selectors', ...)

// Old ways, and still work:
document.getElementsByTagName('element-name')
document.getElementsByClassName('class-name')
document.getElementById('id')

Create / clone Element

document.createElement('div')
document.createTextNode('some text here')
node.cloneNode()
node.textContent = 'some text here'

Modify Element

node.style.color = 'red'
node.style.padding = '10px',
node.style.fontSize = '200%'

node.setAttribute('attr-name', 'attr-value')
node.removeAttribute('attr-name')

Get and Modify Element Class

node.classList
node.classList.add('class-name', ...)
node.classList.remove('class-name', ...)
node.classList.toggle('class-name')
node.classList.contains('class-name')
node.classList.replace('old', 'new')

Add node to document

parentNode.appendChild(nodeToAdd)
parentNode.insertBefore(nodeToAdd, childNode)

Remove Node

parentNode.removeChild(nodeToRemove)
// Hack to remove self
nodeToRemove.parentNode.removeChild(nodeToRemove)

Get Element Details

node.nextSibling
node.firstChild
node.lastChild
node.parentNode
node.childNodes
node.children

Events

node.addEventListener('event-name', callback-function)
node.removeEventListener('event-name', callback-function)

List of Events: https://developer.mozilla.org/en-US/docs/Web/Events

or google "Mozilla event reference"

"Don't just learn JavaScript - Become a Full-Stack JavaScript Developer" https://iLoveCoding.org

iLoveCoding

JavaScript Cheatsheet
Learn JavaScript Correctly (Video course) https://ilovecoding.org/courses/js2

Page 9< >♥ iLoveCoding

16 Built-in Objects

Date

Google 'Mozilla Date' to find the docs

const d = new Date('9/17/1988');

d.getDay()

d.getFullYear()

d.getMonth()

Date.now()

Milliseconds since Jan 1, 1970

Math

Google 'Mozilla Math' to find the docs

Math.pow(2, 3) // 8

Math.sqrt(16) // 4

Math.min(7, 8, 6) // 6

Math.max(7, 8, 6) // 8

Math.floor(123.45) // 123

Math.ceil(123.45) // 124

Math.round(123.45) // 123

Math.random() // 0.45..

JavaScript gives us a ton of useful
built-in objects to make our lives
easier. The Date and Math objects
are very useful on a regular basis.
Take a look at some of their
features on the right.

Full list of builtin objects in JavaScript visit https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects

15 Auto Inherited Properties

String

Google 'Mozilla String' to find the docs

.concat()

.charAt()

.indexOf()

.startsWith()

.endsWith()

.split()

.slice()

Number

Google 'Mozilla Number' to find the docs

.toFixed()

.toPrecision()

.toString()

Boolean

Google 'Mozilla Boolean' to find the docs

.toString()

Array

Google 'Mozilla Array' to find the docs

.filter()

.map()

.find()

.every()

.some()

.sort()

.slice()

.splice()

.reduce()

.forEach()

When you create a value in
JavaScript, certain properties are
automatically inherited by this value.
This magic happens because every
type has a constructor with a special
property called prototype. All
methods on the prototype gets
automatically inherited by the new
value created for that type.
Take a look at some of of these
methods on the right.

const thing = "some text"; const num = 123.45;

"Don't just learn JavaScript - Become a Full-Stack JavaScript Developer" https://iLoveCoding.org
iLoveCoding

JavaScript Cheatsheet
Learn JavaScript Correctly (Video course) https://ilovecoding.org/courses/js2

Page 10iLoveCoding< >♥

What is a Promise?
Promise is an object that provides a useful construct when dealing

with asynchronous tasks. A promise is called a "Promise" because it

guarantees it will run upon success or failure of that task.

Working with a promise consists of two parts; (A) Creating a promise,

and (B) Using a promise.

What is an Async task?
An async task is one in which a third-party process is

doing the task.

Examples:

- Requesting/sending data to a database

- Requesting/sending data via HTTP protocol

- Working with the file system of the computer

17 Promise

Note: 90% of the time you will be working with pre-existing

promises. The step of "Creating a promise" would be done for

you either by a library, framework or environment you are

using. Examples of promises: fetch

// (B) Using a promise
p.then((res)=>{

console.log(res)
})
.catch((err)=>{

console.log(err)
})

// (A) Create a promise
const p = new Promise((resolve, reject)=>{

// Do some async task
setTimeout(()=>{

if(condition){
resolve('Successful login');

} else {
reject('Login failed');

}
}, 2000)

})

"Don't just learn JavaScript - Become a Full-Stack JavaScript Developer" https://iLoveCoding.org

iLoveCoding

JavaScript Cheatsheet
Learn JavaScript Correctly (Video course) https://ilovecoding.org/courses/js2

Page 11iLoveCoding< >♥

18 'this' keyword
var name = "Fatema";

function fun(){

// some code here

console.log(this.name);

}

const user = {

name: "Marium",

yearOfBirth: 1999,

calcAge: function(){

const currentYear = (new Date()).getFullYear();

return currentYear - this.yearOfBirth;

}

}

fun(); // 'this' is global. Logs "Fatema"

user.calcAge(); // 'this' is the user object

fun.call(user); // 'this' is the user object. Logs "Marium"

Scenario #1: this inside a function
The this keyword points to global object.

Scenario #2: this inside a method
The this keyword points to the object the

method is in.

Scenario #3: When function is run with
call, bind or apply
When a function is called using the

.call(param) .bind(param) or .apply(param)

method, the first param become the object

that the this keyword refers to.

The this keyword is used inside a function. The this

keyword is merely a reference to another object.

What the this keyword refers to depends on the

scenario or the way the function is implemented.

Here are the 3 scenarios to remember:

Important Note:
In the browser, global is the window object.

In Node.js, global is the global object.

"Don't just learn JavaScript - Become a Full-Stack JavaScript Developer" https://iLoveCoding.org

iLoveCoding

JavaScript Cheatsheet
Learn JavaScript Correctly (Video course) https://ilovecoding.org/courses/js2

Page 12< >♥ iLoveCoding

19 Constructor
// Defining a Constructor

function Car(make, model, year){

this.make = make;

this.model = model;

this.year = year;

this.setMiles = function(miles){

this.miles = miles

return miles;

}

}

// Using a constructor

const car1 = new Car('Toyota', 'Prius', 2016);

const car2 = new Car('Hyundai', 'Sonata', 2018);

// Adding method to the constructor prototype

Car.prototype.age = function(){

return (new Date()).getFullYear() - this.year;

}

car1.age(); // 2

Rule of thumb:
A) Set properties

inside a constructor.

B) Set methods inside

the prototype

property.

"new" keyword
The new keyword is

used to create a new

object (instance) from

the constructor.

"prototype" property
prototype is a special

property on every

object. Properties

(methods or values)

attached to the

prototype property

get inherited to every

instance of the

constructor.

What is a constructor?
In JavaScript, a constructor is a special

function that acts as a mold to create

new objects.

There are numerous built-in constructors

in JavaScript, such as String, Number,

Promise, Date, Array, Object, and many

more.

We can create our own custom

constructors if need be.

A great place to use a constructor is

when you are creating multiple objects of

the same kind.

There are two parts to working with a

constructor:

(1) Defining a constructor
When creating a custom constructor

(2) Using a constructor
with the "new" keyword

"Don't just learn JavaScript - Become a Full-Stack JavaScript Developer" https://iLoveCoding.org

iLoveCoding

JavaScript Cheatsheet
Learn JavaScript Correctly (Video course) https://ilovecoding.org/courses/js2

Page 13< >♥ iLoveCoding

